
15 16

ICMC 2015 Keynote Address
The Sampling Theorem and
its Discontents

by Miller Puckette
Saturday, 26 September 2015

The fundamental principle of
computer music is usually taken to
be the Nyquist-Shannon sampling
theorem, which states that a band-
limited function can be exactly
represented by sampling it at regular
intervals. This paper will not quarrel
with the theorem itself, but rather will
test the assumptions under which it
is commonly applied, and endeavor
to show that there are interesting
approaches to computer music that lie
outside the framework of the sampling
theorem.

As we will see in Section 3, sampling
violations are ubiquitous in everyday
electronic music practice. The
severity of these violations can
usually be mitigated either through
various engineering practices and/
or careful critical listening. But their
existence gives the lie to the popular
understanding of digital audio practice
as being ‘lossless’.

This is not to deny the power of modern
digital signal processing theory and its
applications, but rather to claim that its
underlying assumption – that
the sampled signals on which we are
operating are to be thought of as
exactly representing band-limited
continuous-time functions – sheds light on
certain digital operations (notably time-
invariant filtering) but not so
aptly on others, such as classical
synthesizer waveform generation.

Digital audio practitioners cannot escape
the necessity of representing
continuous-time signals with finite-sized
data structures. But the blanket
assumption that such signals can only be
represented via the sampling theorem
can be unnecessarily limiting. In Sections
4 and 6 I’ll describe investigations by two
recent UCSD graduates that each adopt
a distinct approach to audio manipulation
outside the framework of the sampling
theorem.

A collection of accompanying patches
that demonstrate some of these ideas can
be downloaded from msp.ucsd.edu/ideas/
icmc15-examples/.

1. The assumptions

Band-limited functions are a vector space:
you can scale one of them, or add two
of them, to get another. But that is where

closure ends. The trouble begins as
soon as we even go so far as to multiply
one signal by another. Suppose two
sampled signals, X[n]and Y[n], are used to
represent two continuous
functions of time x(t), y(t), which we
assume to be band-limited, containing
only frequencies in the Nyquist frequency
band, the interval (-R/2, R/2) where
R is the sample rate.The values can either
be real or complex, and for
simplicity we’ll assume the computer can
exactly represent the numerical
values. (It isn’t true but that is usually a
comparatively minor issue).

There is, of course, a perfectly good
continuous-time signal, call it z(t),
that is represented by the computable
product, Z[n] =X[n]Y[n]. But it’s not
in general the case that z(t) = x(t)y(t).
We didn’t in reality make the product of
the two continuous-time signals we were
representing when we multiplied their
computer representations.

At this point we can look ruefully back at
every occurrence of the character
“*” in all the Csound, Pd, SuperCollider,
Kyma, 4X, or MUSIC 10 instruments
we’ve ever built and reflect on the fact
that the result isn’t really correct, if we
regard our sampled signals as representing
continuous-time ones. Often it’s a
very serviceable approximation. If, for
instance, the signals x(t) and y(t) have

frequency limits whose sum is less than
R/2,the multiplication is exact; and
when not exact, it is often a very good
approximation. But the approximation’s
accuracy or lack thereof is rarely
worked out explicitly.

We could always take action to band-limit
two signals (by filtering them) before
multiplying so that the multiplication itself
doesn’t yield frequencies outside
the Nyquist frequency band. But this
would cause delays and/or phase
distortion, not to mention the
computational cost this would incur.

One fundamental operation in electronic
music practice (in my thinking, the
most fundamental one) is table lookup,
which is used in digital oscillators and
samplers, and also in nonlinear techniques
such as FM and waveshaping. Again
sidestepping the comparatively minor
issue of the accuracy limits of wavetable
lookup, we instead again consider the
possibility of frequency products landing
outside the Nyquist band. Suppose the
incoming signal is a sinusoid of frequency
ω and that the wavetable lookup can be
approximated as a power series,

 f(x) = a0 + a1 x + a2x2 + …

The highest possible frequency product of
the kth term (ak xk) is kω. If the function is
a polynomial (thus stopping at a finite k)

ICMC 2015 Keynote Miller Puckettearray

15

2016/2017

17 18

then the situation is at least in principle
possible to control by limiting kω never
to exceed R/2 (whether by fiat or by
filtering). But for any other choice of f(x)
the result is in general not band limited at
all, and some foldover is inevitable.

There is a reasonably broad class of
operations that can be carried out without
departing from the safe zone of the
Nyquist theorem. One can record and
play back sounds. Delay networks and
filters (both recursive and not) are safe as
long as the coefficients do not change in
time. One can spatialize sounds using
level panning. But this still leaves a
majority of electronic music practices
that cannot be guaranteed band-limited
in practice; in addition to the examples of
FM and waveshaping cited earlier, even
additive synthesis, which would seem to
be safely band-limited at first thought, is
in reality not, since at a very minimum we
have to multiply the component sinusoids
by time-varying envelopes.

If, for example, these envelopes are
constructed using line segments, then
every envelope breakpoint gives rise to
non-band-limited frequency products
dropping off in amplitude as ω-2. The
resulting foldover is often inaudible but it
is not hard to concoct situations in which
it is not.

The most ready defense against the

distortions arising from digital sampling
is to train one’s ears to hear it and, as
necessary, adjust parameters or raise
sample rates until it is no longer audible
But to learn to hear this, a young
electronic musician would need examples
of clean and dirty signals to compare. It
is possible that practice will erode over the
years as ears gradually get used to hearing
foldover, until perhaps one day few people
will have heard a cleanly synthesized
sound, in much the same way that few
North Americans or Europeans have ever
tasted a tree-ripened banana.

2. Example of a non-band-limited
signal representation

Any system for representing continuous
functions digitally will only be able to
exactly represent a small subset of all
possible functions, and/or to approximate,
more or less well, functions that can’t
be exactly represented. Any particular
choice of representation will imply a
certain subset of functions that can
be represented, and perhaps a way of
choosing which representable function to
swap in for one that is not representable.
For example, sampling at a constant rate
allows us to claim the subset of functions
that are suitably band-limited and to
approximate any other one by leaving
out whatever lies outside the band limit.
This is clearly an excellent choice for
digital audio in general, but for some

applications other choices might be
preferable.

Here for example is another possible
choice: we could choose to represent
arbitrary piecewise linear functions of
time by specifying the endpoints of the
line segments. For example, a function
like the one shown in Figure 1 could be
represented by a sequence of triples:

(t1, x1, y1), (t2, x2, y2)

This would allow, for example, a sawtooth
wave to be represented exactly.
Certain operations (adding two such
functions together, for example) could be
carried out in the representation, but
others (for instance, multiplying them)
could not (although we could allow that as
well if we extended the format to
allow arbitrary piecewise polynomials...
but I won’t belabor the point here).

Figure 1: A digitizable representation of
piecewise-linear functions of time

The interesting thing about this format is
that it can exactly represent classes

of functions that can’t be represented
using the sampling theorem. Although it
is certainly less well adapted to the day-to-
day operations of most electronic
musicians than sampled functions would
be, there is at least one piece of music
that would have been quite naturally
expressed in this way: Xenakis’s S709, a
few microseconds of which are shown in
Figure 2, and which is described in [9]
with an appendix showing a code listing
of Marie-Helene Serra’s implementation.
The piece is realized by generating
repeated copies of a line-segment
waveform in which the vertices vary at
random, successively from cycle to cycle;
the number of segments may vary as well.
This is at least an existence proof that a
line-segment-based signal representation
may lead naturally to signal
manipulations that at least some
composers might find musically useful.

3. Violating the theorem’s
assumptions

On the subject on the sampling theorem,
we should not forget that the whole
practice of electronic music using
sampled audio signals, and indeed the
now-ubiquitous use of wavetables for
sound synthesis, dates back to Max
Mathews. Mathews himself was trained
as an engineer and always took care to let
people know about the limitations of the
technology. Around 2007 he was showing

t1 t2 t3 t4

x1

y1

x2

y2

x3

y3

ICMC 2015 Keynote Miller Puckettearray 2016/2017

19 20

visitors to his laboratory a wonderful
demonstration which, since I haven’t seen
it published, I’ll repeat here.1

Mathews’s idea is to put a square pulse in
a wavetable (in my example, I put a
one-sample-wide pulse in a 200-element
table) and then to scan it, without
interpolating, with the phase advancing by
various sampling increments. Choosing a
sampling increment of 1/n where n is an
integer (taking the table lookup domain
to be from 0 to 1), you get a clean pitch
of R/n where R is the sample rate. (This
assumes that the phase accumulation
itself is done to arbitrarily high precision
before applying the non-interpolated table
lookup). Choosing an arbitrary sample
increment gives a characteristically dirty
sound.

Figure 2: 200 samples of Xenakis’s S709

We now choose a sample increment
almost equal to 1/100 but slightly
detuned. If the sample increment were
exactly 1/100, you would either hear a

sound if the phase happened to pass
between 0 and 1/200, but silence if the
phase passes between 1/200 and 1/100
but silence if (thereby skipping over the
pulse). Since the slight detuning makes the
phase drift alternately between these two
cases, we unexpectedly hear a tone that
toggles on and off. You can think of this
as a beating pattern between an infinite
series of foldover products that just
happen to line up to make a square-wave
modulation of the tone.

4. Example: modeling the Moog
ladder filter

We now consider one interesting way to
approximate continuous-time processes in
a computer, using numerical differential
equation solvers instead of sampled
processes. In this discussion I’ll rely
heavily on work by recent UCSD PhD
graduates Andrew Allen [1] and David
Medine [5].

A good starting example is the famous
Moog ladder filter design [6], a
conceptual block diagram view of which
is shown in Figure 3. Each low-pass filter
in the diagram is a one-pole design whose
cutoff frequency (k, in radians per unit
time) is voltage-controlled. (Here we’re
not showing the elegant circuit design that
realizes this; Moog not only had to find a
good signal processing model but also one
he could realize with bipolar transistors).

Figure 3: block diagram representation of the
Moog ladder filter

This block diagram leads to the following
system of ordinary differential equations:

 x1 = k . [S(a - gx4) - S(x1)]
 x2 = k . [S(x1) - S(x2)]
 x3 = k . [S(x2) - S(x3)]
 x4 = k . [S(x3) - S(x4)]

Here S denotes a nonlinear saturation
function reflecting the fact that in any
real circuit realization of the network,
the filters’ output would be limited by the
available power supply. This is a good
thing of course, because the filter can be
made unstable by turning up the feedback
gain g. We’d rather allow the outputs of
the filters to saturate than merely vaporize
the planet as would otherwise happen
when g first exceeded 4.

The usual and somewhat schematic
explanation of how this filter works is that,
at the frequency k, each low-pass filter
retards the signal by 1/8 cycle, so
that the four of them retard it by 1/2
cycle, so that multiplied by -g the
feedback path is in phase with the input
(at g/4 times the amplitude), so that

the circuit resonates. The difficulty of
digitizing this circuit stems from the
fact that in a digital realization there will
be at least a one-sample delay in
the feedback path, thus changing the
frequency at which resonance occurs.
This change can be quite significant; for
instance, if k is set to one quarter of
the sample rate we pick up a fifth quarter-
cycle, so we would expect the
resonant frequency to be off by a minor
third (20%). The filter is often used
as an oscillator, in which usage this will be
heard as a tuning error – and it
would be reasonable to ask that one
control an oscillator’s frequency to within
a few cents, perhaps 1000 times better
than the naive digital implementation
does. If we assume linearity this can be
corrected satisfactorily using standard
DSP techniques [7]; but if we take the
nonlinearities fully into account it takes
much hard work [3] to overcome the
problems that result from digitizing the
Moog ladder filter.

What I propose here will sound facile, and
perhaps it is: why not go back to
the differential equations and apply a
traditional numerical ODE solver to
them? Very little brainpower is required.
One simply goes to the Wikipedia page
for “Runge-Kutta” and types the familiar
four-step version into a Pd extern. This
is the basis of the bob~ object released
with Pure Data.

-g

x1 x2 x3 x4a
k k k k

ICMC 2015 Keynote Miller Puckettearray 2016/2017

21 22

This approach has the disadvantage
that it requires far more computation to
generate output samples than the DSP
approach does. If your end goal is a
stand-alone software or hardware product
that imitates the historical Moog ladder
filter, it may well be worth the research
and development time (months or years)
required to implement one using the
work cited above. But on the other hand,
if your aim is to explore one or another
possible refinement of, or deviation from,
the modeled filter then you would have
to redo all this work for each possible
modification. Furthermore, without any
real filter to test your results against, you
could never know how accurate your
modeling really is.

For one thing, we cannot automatically
assume that the many idealizations built
into our model aren’t causing us to lose
something in translation [8]. To know
that for sure we would have to make
comparisons, one by one, of the simplified
model against one in which each
simplifying assumption was replaced with
a more realistic one. This is feasible using
numerical methods, but would be onerous
to do using DSP techniques.

But things get even more interesting when
we consider possible variations on the
filter design itself (leaving aside the
question of whether a ‘real’ circuit
might exist to exhibit them). After all,

there is something self-defeating in the
idea of using contemporary technology to
try to recreate sonic experiences from the
past, when instead we could be looking
for new ones.

To make just one example, suppose
we decided that the cutoff/resonant
frequency k should depend on the internal
state of the filter, for instance taking one
value when state variable x1 is positive and
a different one otherwise. If you drove
such a filter to oscillation (g ≥4) you would
get a sort of self-FM, and if instead (or in
addition) you drove it with an incoming
sound you could get a variety of effects.1

You could make all sorts of other changes;
for instance changing the number of
stages from four to eight or twelve,
possibly making several taps with
independently controllable feedback
coefficients, inserting input signals at
more than one point in the circuit, making
the saturation function asymmetrical,
and so on without end.

This line of exploration should not be
confused with the idea of simulating or
modeling actual circuits. One could do
that with the SPICE circuit simulator,
for example. But such an approach has
several disadvantages. First, you have
to design a real circuit, which is much
harder to do than to arrange low-pass
filters as described in the functional

not yield explicit expressions for the
derivatives of the state variables; instead,
a system of simultaneous equations must
be solved to compute the derivatives.
(In physical terms, this is because real
electronic components don’t have ‘inputs’
and ‘outputs’; instead, causality flows
bidirectionally along each physical wire.)

Instead, what we have here, as David
Medine proposes, is a block-diagram-
based system of components each of
whose output’s derivative is a function of
its state and inputs, in such a way that we
can construct a modular synthesis
environment that is realizable in systems
of differential equations in explicit form,
readily solvable using straightforward
techniques such as Runge-Kutta.
Although the software doesn’t exist yet,
this could easily be made into a graphical
patching language for quickly exploring a
wide range of synthesis techniques.

5. Two More Dynamical Systems

The Moog filter simulation above is an
example of a dynamical system, which is
only to say, ‘it’s a system that can be
written as a set of simultaneous first-
order differential equations, solved for the
derivative terms’. Such a system can be
visualized as in Figure 4.

Here the system of equations describes a
simple forced oscillator:

 ẋ = -ky + (1 - x2 - y2) x + f(t)
 ẏ = -kx + (1 - x2 - y2)y

This can be thought of as a vector field,
where the points are possible states of
the system and the vectors are the time
derivatives which show how the current
state flows through the state space. The
flow may depend on time; in this example
there’s a forcing function f(t) imposed from
elsewhere. (The vector field is drawn in
the figure with the forcing function f(t)=0).

When f(t) = 0, this oscillator converges to
the unit circle where the term 1 - x2 - y2
disappears; the result is simple harmonic
motion. As with the Moog filter when
pushed into oscillation, this example gives
various results when forced with a sinusoid
tuned a minor third or so from the natural
oscillating frequency.1 (In truth it is much
less interesting sonically than the Moog
example, but its conceptual simplicity
makes it suitable for a range of extensions
that will not be explored here.)

For another example of a dynamic
system, consider the famous Lorenz
attractor.1 Here, for convenience, in
addition to the usual parameters α, β, ρ
there is a speed parameter, in MIDI units,
that simply scales all the time derivatives
so that the model runs globally faster or
slower. The output can either be listened
to directly (by connecting one or another

ICMC 2015 Keynote Miller Puckettearray 2016/2017

23 24

state variable directly to a loudspeaker) or
used to control the pitch of a sinusoidal
oscillator; I find the latter choice the more
interesting to hear.

This approach has the disadvantage that
it requires far more computation to
to directly (by connecting one or another
state variable directly to a loudspeaker) or
used to control the pitch of a sinusoidal
oscillator; I find the latter choice the more
interesting to hear.

Figure 4: Example of a dynamical system: a
forced oscillator

state variable directly to a loudspeaker) or
used to control the pitch of a sinusoidal
oscillator; I find the latter choice the more
interesting to hear.

6. Ruratae: unphysical modeling

Andrew Allen takes continuous-time
modeling in a quite different direction,
realized in his Windows game (to use the
word loosely), named Ruratae. Here the
model is that of a physically vibrating
network of interconnected objects, much
as in physical modeling systems such as
Cordis Anima [2] or Modalys [4]. Unlike
those systems, the emphasis here is not on
exactly modeling a real physical system.
Such modeling has limitations similar
to those of circuit modelers as either
would be applied to music synthesis:
expertise is required to ‘build’ reasonable
sounding instruments, and once the
instruments are built they cannot be
quickly modified.

Ruratae takes a higher-level approach, in
which fanciful collections of point
masses are connected by generalized
‘springs’ that may exhibit nonlinear
responses, damping, and/or may snap
when elongated past a maximum value.
The system makes no distinction between
the act of building an instrument and that
of playing it. The user hears the
instrument vibrating in reaction as masses
and connections are added or deleted (or
snap). This encourages a highly intuitive
and exploratory style of instrument
design.

Compared to dynamical systems in
general, Ruratae’s focus on idealized
physical systems constrains them in a way

of the system in real time at computer-
game-worthy frame rates (the graphical
optimization was tricky and system-
dependent, which is why the game runs
only on Windows).

To draw a conclusion from the work of
both Allen and Medine, the universe of
ODE systems is still uneven terrain where
no single approach is without its own
particular set of limitations. At the same
time, both approaches are powerful and
offer much potential to build compelling
and fun computer music instruments.
This should continue to be an active area
of research.

Figure 5: Screen shots from Andrew Allen’s
Ruratae software (reprinted from his PhD
dissertation)

7 Uniform flows on locally flat
surfaces

We turn now to a very different possible

approach to modeling continuous-time
processes. Returning to the idea of using
dynamical systems as audio generators,
we propose a methodology for designing
ones for which we can find exact solutions
despite the availability of interesting
non-periodic behavior. Specifically, we
can impose a constant vector field as
the flow, so that locally we get motion in
straight lines. Interesting results can come
from connecting flat sheets together in
geometries that have cantankerous global
properties.

A physical system that suggested this
approach is pictured in Figure 6. Two
ideal mass-spring systems, with equal
masses but tuned to different frequencies,
are held at a distance apart so that they
collide, either occasionally or constantly.
Collisions are elastic: each mass recoils at
its speed of incidence as if it had bounced
to a hard surface. (This isn’t really correct;
the masses should in fact exchange
velocities; but it is much easier to model
this way since each oscillator’s energy then
stays fixed.)1

Figure 6: Dynamical system: two colliding,

ICMC 2015 Keynote Miller Puckettearray 2016/2017

25 26

Both of the two systems are assumed to
oscillate with amplitude 1, and can thus
be represented by their phases ø1, ø2,
which we take to range from -π to π, and
equal to 0 when a spring is at its most
stretched. At moments where the phases
are such that the two masses come into
contact, say at ø1 = -øa and ø2 = -øb, we
simply advance the phase so that they are
in the same location but moving away
from each other instead, that is, wrapping
around forward to phases ø1 = +øa and ø2
= +øb. To be exactly correct, we should
measure by what amount the two phases
have exceeded the values at which the
collision occurs and the rebound phases
should be forwarded by the same amount,
but the provided patch does not take care
of this detail.

Here is an analysis of the behavior of
the system, slightly further simplified
but presented in a way that can readily
be generalized. The phase space is a
square whose coordinates are the two
phases, with a centered, diagonally
oriented square corresponding to points
at which the two masses would occupy
the same space (see Figure 7. This is a
simplification; in the original physical
model the forbidden region is not really
a square. Many other boundary shapes
could be used instead.)

Without the middle square cut away, the
phase space would be a torus and the

flow would be a constant vector field,
so that trajectories would be the
familiar geodesics known to players of
1960s-vintage SPAWAR. The missing
square acts as a wormhole in the space.
Whereas the dotted path in the figure
represents a possible trajectory in the
absence of the wormhole (so that the two
oscillators advance independently), in the
presence of the wormhole the trajectory is
altered as shown by the solid path.

We can then listen to any suitably smooth
function of the phase space. For instance,
to hear a mixture of the two oscillators
we would choose the function cos(ø1) +
cos(ø2), but other choices abound. We
would require only that the function take
the same value on any two diametrically
opposed points so that the result of
crossing the wormhole is continuous. (If
we wish, we could work somewhat harder
and arrange for matching derivatives as
well.)

The whole scheme could easily be
extended to higher-dimensional spaces
(representing more than two oscillators)
with as yet unexplored results. Even
with only two dimensions, a variety of rich
interactions between the two oscillators
can be quickly found.

The interesting thing about this model is
that it allows for exact solutions. To know
our position in phase space at any point

Figure 7: Trajectories through toroidal phase
space: dotted path, normal; solid path: with
wormhole

in time, we merely propagate forward in
a straight line until we hit a boundary
(at a time point that in general won’t be
an integer number of samples at any
fixed sample rate). Whenever we reach a
boundary, we jump to the diametrically
opposed boundary point and continue
as before. This gives us a list of segments
in a format similar to that of Figure 1.
To listen to the output, we convert it to a
sampled signal.

8 Observations and conclusions

Early Bell-Labs-resident composers such
as James Tenney, Jean-Claude Risset, and
Charles Dodge set out a theory and praxis
of computer music that many composers
have since followed, privileging precise
execution of carefully specified and

planned-for musical desiderata.
The hankering of late twentieth-
century Western composers for order
and structure fit in perfectly with
the computer’s ability to accurately
manipulate data, and their musical
practice did not suffer much from
the computer’s main early failing:
the impossibility of real-time audio
computations. It is in a spirit of
appreciation for their contributions that I
am here exploring the spaces beyond the
pale they constructed – if for no other
reason than the light it sheds on what
we’re doing as we follow in their
footsteps.

Meanwhile, traditional musical
instruments (especially that oldest one,
the human voice) refuse to give up their
secrets, and remain capable of musical
gestures that no computer can yet imitate.
Part of the secret undoubtedly lies in
the real-time interaction between player
and instrument, and perhaps another
aspect is the complexity and inherent
unpredictability of the physical processes
that take place inside the instruments.

It is no accident that all the examples
I have invoked here are in one way
or another unpredictable. Because of
this they practically require real-time
exploration to unlock their musical
possibilities. In this respect they are all also
beholden to another tradition perhaps

φ
1

2
φ

0

0

ICMC 2015 Keynote Miller Puckettearray 2016/2017

27 28

best exemplied by Michel Waisvisz’s
famous Crackle Box. They lie on the
fringe of what is considered correct
electronic music practice. Fringes are
are interesting loci, and any reasonably
complex domain will have many of them;
so even if each individual one is limited in
range their aggregate might offer a large
range of possibilities. Besides, what seems
like a fringe one day might be understood
as the mainstream sometime in the future
(for example: electronic music itself).

Notes

1.The examples used in this article
are: mathews-table-lookupexample.
pd, bentbob-test.pd, forcedosc-test.pd,
lorenz-test.pd, coupled-sampled.pd. All
are available from msp.ucsd.edu/ideas/
icmc15-examples/

References

[1] A. S. Allen, “Ruratae: a physics-based
audio engine,” Ph.D. dissertation,
University of California, San Diego, 2014.

[2] C. Cadoz, A. Luciani, and J. L.
Florens, “Cordis-anima: a modeling and
simulation system for sound and image
synthesis: the general formalism,” Computer
Music Journal, vol. 17, no. 1, pp. 19-29,
1993.

[3] A. Huovilainen, “Non-linear digital

implementation of the Moog ladder
filter,” In Proceedings of the International
Conference on Digital Audio Effects
(DAFx-04), 2004, pp. 61-64.

[4] F. Iovino, R. Causse, and R. Dudas,
“Recent work around modalys and
modal synthesis,” in Proceedings of the
International Computer Music Conference.

[5] D. Medine, “Dynamical systems for
audio synthesis: Embracing nonlinearities
and delay-free loops,” Applied Sciences, vol.
6, no. 5, p. 134, 2016.

[6] R. A. Moog, “A voltage-controlled low-
pass high-pass lter for audio signal
processing,” in Audio Engineering Society
Convention 17. Audio Engineering
Society, 1965.

[7] T. Stilson and J. Smith, “Analyzing the
Moog VCF with considerations
for digital implementation,” in Proceedings
of the International Computer Music
Conference, International Computer Music
Association, 1996.

[8] T. E. Stinchcombe, “Analysis of the
Moog transistor ladder and derivative
lters,” Citeseer, Tech. Rep., 2008.

[9] I. Xenakis, Formalized Music: Thought
and Mathematics in Composition. Pendragon
Press, 1992, no. 6.

ICMC 2015 Keynote Miller Puckettearray 2016/2017

