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The fundamental principle of  
computer music is usually taken to 
be the Nyquist-Shannon sampling 
theorem, which states that a band-
limited function can be exactly 
represented by sampling it at regular 
intervals. This paper will not quarrel 
with the theorem itself, but rather will 
test the assumptions under which it 
is commonly applied, and endeavor 
to show that there are interesting 
approaches to computer music that lie 
outside the framework of  the sampling
theorem.

As we will see in Section 3, sampling 
violations are ubiquitous in everyday 
electronic music practice. The 
severity of  these violations can 
usually be mitigated either through 
various engineering practices and/
or careful critical listening. But their 
existence gives the lie to the popular 
understanding of  digital audio practice 
as being ‘lossless’. 

This is not to deny the power of  modern 
digital signal processing theory and its 
applications, but rather to claim that its 
underlying assumption – that
the sampled signals on which we are 
operating are to be thought of  as
exactly representing band-limited 
continuous-time functions – sheds light on 
certain digital operations (notably time-
invariant filtering) but not so
aptly on others, such as classical 
synthesizer waveform generation.

Digital audio practitioners cannot escape 
the necessity of  representing
continuous-time signals with finite-sized 
data structures. But the blanket
assumption that such signals can only be 
represented via the sampling theorem
can be unnecessarily limiting. In Sections 
4 and 6 I’ll describe investigations by two 
recent UCSD graduates that each adopt 
a distinct approach to audio manipulation 
outside the framework of  the sampling 
theorem.

A collection of  accompanying patches 
that demonstrate some of  these ideas can
be downloaded from msp.ucsd.edu/ideas/
icmc15-examples/.

1. The assumptions

Band-limited functions are a vector space: 
you can scale one of  them, or add two
of  them, to get another.  But that is where 

closure ends. The trouble begins as
soon as we even go so far as to multiply 
one signal by another. Suppose two
sampled signals, X[n]and Y[n], are used to 
represent two continuous
functions of  time x(t), y(t), which we 
assume to be band-limited, containing
only frequencies in the Nyquist frequency 
band, the interval (-R/2, R/2) where
R is the sample rate.The values can either 
be real or complex, and for
simplicity we’ll assume the computer can 
exactly represent the numerical
values. (It isn’t true but that is usually a 
comparatively minor issue).

There is, of  course, a perfectly good 
continuous-time signal, call it z(t),
that is represented by the computable 
product, Z[n] =X[n]Y[n].  But it’s not
in general the case that z(t) = x(t)y(t). 
We didn’t in reality make the product of  
the two continuous-time signals we were 
representing when we multiplied their 
computer representations.

At this point we can look ruefully back at 
every occurrence of  the character
“*” in all the Csound, Pd, SuperCollider, 
Kyma, 4X, or MUSIC 10 instruments
we’ve ever built and reflect on the fact 
that the result isn’t really correct, if  we 
regard our sampled signals as representing 
continuous-time ones.  Often it’s a 
very serviceable approximation.  If, for 
instance, the signals x(t) and y(t) have 

frequency limits whose sum is less than 
R/2,the multiplication is exact; and 
when not exact, it is often a very good
approximation. But the approximation’s 
accuracy or lack thereof  is rarely
worked out explicitly.

We could always take action to band-limit 
two signals (by filtering them) before
multiplying so that the multiplication itself  
doesn’t yield frequencies outside
the Nyquist frequency band. But this 
would cause delays and/or phase
distortion, not to mention the 
computational cost this would incur.

One fundamental operation in electronic 
music practice (in my thinking, the
most fundamental one) is table lookup, 
which is used in digital oscillators and
samplers, and also in nonlinear techniques 
such as FM and waveshaping. Again
sidestepping the comparatively minor 
issue of  the accuracy limits of  wavetable
lookup, we instead again consider the 
possibility of  frequency products landing
outside the Nyquist band. Suppose the 
incoming signal is a sinusoid of  frequency 
ω and that the wavetable lookup can be 
approximated as a power series,

    f(x) = a0 + a1 x + a2x2 + …

The highest possible frequency product of  
the kth  term (ak xk) is kω. If  the function is 
a polynomial (thus stopping at a finite k)
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then the situation is at least in principle 
possible to control by limiting kω never 
to exceed R/2 (whether by fiat or by 
filtering). But for any other choice of  f(x) 
the result is in general not band limited at 
all, and some foldover is inevitable.

There is a reasonably broad class of  
operations that can be carried out without
departing from the safe zone of  the 
Nyquist theorem. One can record and 
play back sounds. Delay networks and 
filters (both recursive and not) are safe as
long as the coefficients do not change in 
time. One can spatialize sounds using
level panning. But this still leaves a 
majority of  electronic music practices
that cannot be guaranteed band-limited 
in practice; in addition to the examples of  
FM and waveshaping cited earlier, even 
additive synthesis, which would seem to      
be safely band-limited at first thought, is 
in reality not, since at a very minimum we 
have to multiply the component sinusoids 
by time-varying envelopes. 

If, for example, these envelopes are 
constructed using line segments, then 
every envelope breakpoint gives rise to 
non-band-limited frequency products 
dropping off in amplitude as ω-2. The 
resulting foldover is often inaudible but it 
is not hard to concoct situations in which 
it is not.

The most ready defense against the 

distortions arising from digital sampling 
is to train one’s ears to hear it and, as 
necessary, adjust parameters or raise
sample rates until it is no longer audible 
But to learn to hear this, a young 
electronic musician would need examples 
of  clean and dirty signals to compare. It 
is possible that practice will erode over the 
years as ears gradually get used to hearing 
foldover, until perhaps one day few people 
will have heard a cleanly synthesized 
sound, in much the same way that few 
North Americans or Europeans have ever 
tasted a tree-ripened banana.

2. Example of  a non-band-limited 
signal representation

Any system for representing continuous 
functions digitally will only be able to
exactly represent a small subset of  all 
possible functions, and/or to approximate, 
more or less well, functions that can’t 
be exactly represented. Any particular 
choice of  representation will imply a 
certain subset of  functions that can 
be represented, and perhaps a way of  
choosing which representable function to 
swap in for one that is not representable.  
For example, sampling at a constant rate 
allows us to claim the subset of  functions 
that are suitably band-limited and to 
approximate any other one by leaving 
out whatever lies outside the band limit.  
This is clearly an excellent choice for 
digital audio in general, but for some 

applications other choices might be 
preferable.

Here for example is another possible 
choice: we could choose to represent
arbitrary piecewise linear functions of  
time by specifying the endpoints of  the
line segments. For example, a function 
like the one shown in Figure 1 could be 
represented by a sequence of  triples:

(t1, x1, y1), (t2, x2, y2)

This would allow, for example, a sawtooth 
wave to be represented exactly.
Certain operations (adding two such 
functions together, for example) could be
carried out in the representation, but 
others (for instance, multiplying them)
could not (although we could allow that as 
well if  we extended the format to
allow arbitrary piecewise polynomials... 
but I won’t belabor the point here).

Figure 1: A digitizable representation of  
piecewise-linear functions of  time 

The interesting thing about this format is 
that it can exactly represent classes

of  functions that can’t be represented 
using the sampling theorem.  Although it
is certainly less well adapted to the day-to-
day operations of  most electronic
musicians than sampled functions would 
be, there is at least one piece of  music
that would have been quite naturally 
expressed in this way: Xenakis’s S709, a
few microseconds of  which are shown in 
Figure 2, and which is described in [9] 
with an appendix showing a code listing 
of  Marie-Helene Serra’s implementation. 
The piece is realized by generating 
repeated copies of  a line-segment 
waveform in which the vertices vary at 
random, successively from cycle to cycle; 
the number of  segments may vary as well.   
This is at least an existence proof  that a
line-segment-based signal representation 
may lead naturally to signal
manipulations that at least some 
composers might find musically useful.

3. Violating the theorem’s 
assumptions

On the subject on the sampling theorem, 
we should not forget that the whole
practice of  electronic music using 
sampled audio signals, and indeed the 
now-ubiquitous use of  wavetables for 
sound synthesis, dates back to Max 
Mathews. Mathews himself  was trained 
as an engineer and always took care to let 
people know about the limitations of  the 
technology. Around 2007 he was showing
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visitors to his laboratory a wonderful 
demonstration which, since I haven’t seen 
it published, I’ll repeat here.1  

Mathews’s idea is to put a square pulse in 
a wavetable (in my example, I put a
one-sample-wide pulse in a 200-element 
table) and then to scan it, without
interpolating, with the phase advancing by 
various sampling increments. Choosing a 
sampling increment of  1/n where n is an 
integer (taking the table lookup domain 
to be from 0 to 1), you get a  clean pitch 
of  R/n where R is the sample rate. (This 
assumes that the phase accumulation 
itself  is done to arbitrarily high precision 
before applying the non-interpolated table 
lookup). Choosing an arbitrary sample 
increment gives a characteristically dirty 
sound.

Figure 2: 200 samples of  Xenakis’s S709

We now choose a sample increment 
almost equal to 1/100 but slightly
detuned. If  the sample increment were 
exactly 1/100, you would either hear a

sound if  the phase happened to pass 
between 0 and 1/200, but silence if  the
phase passes between 1/200 and 1/100 
but silence if  (thereby skipping over the 
pulse). Since the slight detuning makes the 
phase drift alternately between these two 
cases, we unexpectedly hear a tone that 
toggles on and off.  You can think of  this 
as a beating pattern between an infinite 
series of  foldover products that just 
happen to line up to make a square-wave 
modulation of  the tone.

4. Example: modeling the Moog 
ladder filter 

We now consider one interesting way to 
approximate continuous-time processes in
a computer, using numerical differential 
equation solvers instead of  sampled
processes.  In this discussion I’ll rely 
heavily on work by recent UCSD PhD
graduates Andrew Allen [1] and David 
Medine [5].

A good starting example is the famous 
Moog ladder filter design [6], a 
conceptual block diagram view of  which 
is shown in Figure 3. Each low-pass filter 
in the diagram is a one-pole design whose 
cutoff frequency (k, in radians per unit 
time) is voltage-controlled.  (Here we’re 
not showing the elegant circuit design that 
realizes this; Moog not only had to find a 
good signal processing model but also one 
he could realize with bipolar transistors). 

Figure 3: block diagram representation of  the 
Moog ladder filter

This block diagram leads to the following 
system of  ordinary differential equations:

           x1 = k . [S(a - gx4) - S(x1)]
           x2 = k . [S(x1) - S(x2)]
           x3 = k . [S(x2) - S(x3)]
           x4 = k . [S( x3) - S(x4)]

Here S denotes a nonlinear saturation 
function reflecting the fact that in any
real circuit realization of  the network, 
the filters’ output would be limited by the 
available power supply. This is a good 
thing of  course, because the filter can be 
made unstable by turning up the feedback 
gain g. We’d rather allow the outputs of  
the filters to saturate than merely vaporize 
the planet as would otherwise happen 
when g first exceeded 4. 

The usual and somewhat schematic 
explanation of  how this filter works is that,
at the frequency k, each low-pass filter 
retards the signal by 1/8 cycle, so
that the four of  them retard it by 1/2 
cycle, so that multiplied by -g the
feedback path is in phase with the input 
(at g/4 times the amplitude), so that

the circuit resonates. The difficulty of  
digitizing this circuit stems from the
fact that in a digital realization there will 
be at least a one-sample delay in
the feedback path, thus changing the 
frequency at which resonance occurs. 
This change can be quite significant; for 
instance, if  k is set to one quarter of
the sample rate we pick up a fifth quarter-
cycle, so we would expect the
resonant frequency to be off by a minor 
third (20%).  The filter is often used
as an oscillator, in which usage this will be 
heard as a tuning error – and it
would be reasonable to ask that one 
control an oscillator’s frequency to within
a few cents, perhaps 1000 times better 
than the naive digital implementation
does. If  we assume linearity this can be 
corrected satisfactorily using standard 
DSP techniques [7]; but if  we take the 
nonlinearities fully into account it takes 
much hard work [3] to overcome the 
problems that result from digitizing the 
Moog ladder filter.

What I propose here will sound facile, and 
perhaps it is: why not go back to
the differential equations and apply a 
traditional numerical ODE solver to 
them? Very little brainpower is required.  
One simply goes to the Wikipedia page 
for “Runge-Kutta” and types the familiar 
four-step version into a Pd extern. This
is the basis of  the bob~ object released 
with Pure Data.

-g

x1 x2 x3 x4a
k k k k
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This approach has the disadvantage 
that it requires far more computation to 
generate output samples than the DSP 
approach does. If  your end goal is a 
stand-alone software or hardware product 
that imitates the historical Moog ladder 
filter, it may well be worth the research 
and development time (months or years) 
required to implement one using the 
work cited above. But on the other hand, 
if  your aim is to explore one or another 
possible refinement of, or deviation from, 
the modeled filter then you would have 
to redo all this work for each possible 
modification. Furthermore, without any 
real filter to test your results against, you 
could never know how accurate your 
modeling really is.

For one thing, we cannot automatically 
assume that the many idealizations built
into our model aren’t causing us to lose 
something in translation [8]. To know 
that for sure  we would have to make 
comparisons, one by one, of  the simplified 
model against one in which each 
simplifying assumption was replaced with 
a more realistic one. This is feasible using 
numerical methods, but would be onerous 
to do using DSP techniques.

But things get even more interesting when 
we consider possible variations on the
filter design itself  (leaving aside the 
question of  whether a ‘real’ circuit
might exist to exhibit them). After all, 

there is something self-defeating in the 
idea of  using contemporary technology to 
try to recreate sonic experiences from the 
past, when instead  we could be looking 
for new ones.

To make just one example, suppose                 
we decided that the cutoff/resonant 
frequency k should depend on the internal 
state of  the filter, for instance taking one 
value when state variable x1 is positive and 
a different one otherwise. If  you drove 
such a filter to oscillation (g ≥4) you would 
get a sort of  self-FM, and if  instead (or in 
addition) you drove it with an incoming 
sound you could get a variety of  effects.1  

You could make all sorts of  other changes; 
for instance changing the number of
stages from four to eight or twelve, 
possibly making several taps with
independently controllable feedback 
coefficients, inserting input signals at
more than one point in the circuit, making 
the saturation function asymmetrical,
and so on without end.

This line of  exploration should not be 
confused with the idea of  simulating or
modeling actual circuits. One could do 
that with the SPICE circuit simulator,
for example. But such an approach has 
several disadvantages. First, you have
to design a real circuit, which is much 
harder to do than to arrange low-pass
filters as described in the functional 

not yield explicit expressions for the 
derivatives of  the state variables; instead, 
a system of  simultaneous equations must 
be solved to compute the derivatives.  
(In physical terms, this is because real 
electronic components don’t have ‘inputs’ 
and ‘outputs’; instead, causality flows 
bidirectionally along each physical wire.)

Instead, what we have here, as David 
Medine proposes, is a block-diagram-
based system of  components each of  
whose output’s derivative is a function of  
its state and inputs, in such a way that we 
can construct a modular synthesis
environment that is realizable in systems 
of  differential equations in explicit form, 
readily solvable using straightforward 
techniques such as Runge-Kutta. 
Although the software doesn’t exist yet, 
this could easily be made into a graphical 
patching language for quickly exploring a 
wide range of  synthesis techniques.

5. Two More Dynamical Systems

The Moog filter simulation above is an 
example of  a dynamical system, which is
only to say, ‘it’s a system that can be 
written as a set of  simultaneous first-
order differential equations, solved for the 
derivative terms’. Such a system can be 
visualized as in Figure 4.

Here the system of  equations describes a 
simple forced oscillator:

      ẋ = -ky + (1 - x2 - y2) x + f(t)
      ẏ = -kx + (1 - x2 - y2)y
   
This can be thought of  as a vector field, 
where the points are possible states of  
the system and the vectors are the time 
derivatives which show how the current 
state flows through the state space. The 
flow may depend on time; in this example 
there’s a forcing function f(t) imposed from 
elsewhere. (The vector field is drawn in 
the figure with the forcing function f(t)=0).

When f(t) = 0, this oscillator converges to 
the unit circle where the term 1 - x2 - y2 
disappears; the result is simple harmonic 
motion. As with the Moog filter when 
pushed into oscillation, this example gives 
various results when forced with a sinusoid 
tuned a minor third or so from the natural 
oscillating frequency.1 (In truth it  is much 
less interesting sonically than the Moog 
example, but its conceptual simplicity 
makes it suitable for a range of  extensions 
that will not be explored here.)

For another example of  a dynamic 
system, consider the famous Lorenz 
attractor.1 Here, for convenience, in 
addition to the usual parameters α, β, ρ 
there is a speed parameter, in MIDI units, 
that simply scales all the time derivatives 
so that the model runs globally faster or 
slower. The output can either be listened 
to directly (by connecting one or another 
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state variable directly to a loudspeaker) or 
used to control the pitch of  a sinusoidal 
oscillator; I find the latter choice the more 
interesting to hear. 

This approach has the disadvantage that 
it requires far more computation to
to directly (by connecting one or another 
state variable directly to a loudspeaker) or 
used to control the pitch of  a sinusoidal 
oscillator; I find the latter choice the more
interesting to hear.

Figure 4: Example of  a dynamical system: a 
forced oscillator

state variable directly to a loudspeaker) or 
used to control the pitch of  a sinusoidal
oscillator; I find the latter choice the more 
interesting to hear.

6. Ruratae: unphysical modeling

Andrew Allen takes continuous-time 
modeling in a quite different direction,
realized in his Windows game (to use the 
word loosely), named Ruratae.  Here the
model is that of  a physically vibrating 
network of  interconnected objects, much
as in physical modeling systems such as 
Cordis Anima [2] or Modalys [4]. Unlike 
those systems, the emphasis here is not on
exactly modeling a real physical system.  
Such modeling has limitations similar
to those of  circuit modelers as either 
would be applied to music synthesis:
expertise is required to ‘build’ reasonable 
sounding instruments, and once the 
instruments are built they cannot be 
quickly modified.

Ruratae takes a higher-level approach, in 
which fanciful collections of  point
masses are connected by generalized 
‘springs’ that may exhibit nonlinear
responses, damping, and/or may snap 
when elongated past a maximum value. 
The system makes no distinction between 
the act of  building an instrument and that
of  playing it.  The user hears the 
instrument vibrating in reaction as masses
and connections are added or deleted (or 
snap). This encourages a highly intuitive 
and exploratory style of  instrument 
design.

Compared to dynamical systems in 
general, Ruratae’s focus on idealized 
physical systems constrains them in a way 

of  the system in real time at computer-
game-worthy frame rates (the graphical 
optimization was tricky and system-
dependent, which is why the game runs 
only on Windows). 

To draw a conclusion from the work of  
both Allen and Medine, the universe of
ODE systems is still uneven terrain where 
no single approach is without its own
particular set of  limitations. At the same 
time, both approaches are powerful and 
offer much potential to build compelling 
and fun computer music instruments. 
This should continue to be an active area 
of  research.

Figure 5: Screen shots from Andrew Allen’s 
Ruratae software (reprinted from his PhD 
dissertation)

7 Uniform flows on locally flat 
surfaces

We turn now to a very different possible 

approach to modeling continuous-time
processes. Returning to the idea of  using 
dynamical systems as audio generators,
we propose a methodology for designing 
ones for which we can find exact solutions 
despite the availability of  interesting 
non-periodic behavior. Specifically, we 
can impose a constant vector field as 
the  flow, so that locally we get motion in 
straight lines. Interesting results can come 
from connecting flat sheets together in 
geometries that have cantankerous global 
properties.

A physical system that suggested this 
approach is pictured in Figure 6. Two
ideal mass-spring systems, with equal 
masses but tuned to different frequencies,
are held at a distance apart so that they 
collide, either occasionally or constantly.
Collisions are elastic: each mass recoils at 
its speed of  incidence as if  it had bounced 
to a hard surface. (This isn’t really correct; 
the masses should in fact exchange 
velocities; but it is much easier to model 
this way since each oscillator’s energy then 
stays fixed.)1

Figure 6: Dynamical system: two colliding, 
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Both of  the two systems are assumed to 
oscillate with amplitude 1, and can thus
be represented by their phases ø1, ø2, 
which we take to range from -π to π, and 
equal to 0 when a spring is at its most 
stretched. At moments where the phases 
are such that the two masses come into 
contact, say at ø1 = -øa and ø2 = -øb, we 
simply advance the phase so that they are 
in the same location but moving away 
from each other instead, that is,  wrapping 
around forward to phases ø1 = +øa and ø2 
= +øb. To be exactly correct, we should 
measure by what amount the two phases 
have exceeded the values at which the 
collision occurs and the rebound phases 
should be forwarded by the same amount, 
but the provided patch does not take care 
of  this detail.

Here is an analysis of  the behavior of  
the system, slightly further simplified 
but presented in a way that can readily 
be generalized. The phase space is a 
square whose coordinates are the two 
phases, with a centered, diagonally 
oriented square corresponding to points 
at which the two masses would occupy 
the same space (see Figure 7. This is a 
simplification; in the original physical 
model the forbidden region is not really 
a square. Many other boundary shapes 
could be used instead.)

Without the middle square cut away, the 
phase space would be a torus and the

flow would be a constant vector field, 
so that trajectories would be the 
familiar geodesics known to players of  
1960s-vintage SPAWAR. The missing 
square acts as a wormhole in the space.  
Whereas the dotted path in the figure
represents a possible trajectory in the 
absence of  the wormhole (so that the two
oscillators advance independently), in the 
presence of  the wormhole the trajectory is 
altered as shown by the solid path.

We can then listen to any suitably smooth 
function of  the phase space. For instance, 
to hear a mixture of  the two oscillators 
we would choose the function cos(ø1) + 
cos(ø2), but other choices abound. We 
would require only that the function take 
the same value on any two diametrically 
opposed points so that the result of  
crossing the wormhole is continuous. (If  
we wish, we could work somewhat harder 
and arrange for matching derivatives as 
well.)

The whole scheme could easily be 
extended to higher-dimensional spaces
(representing more than two oscillators) 
with as yet unexplored results. Even
with only two dimensions, a variety of  rich 
interactions between the two oscillators 
can be quickly found.

The interesting thing about this model is 
that it allows for exact solutions. To know 
our position in phase space at any point

Figure 7: Trajectories through toroidal phase 
space: dotted path, normal; solid path: with 
wormhole 

in time, we merely propagate forward in 
a straight line until we hit a boundary 
(at a time point that in general won’t be 
an integer number of  samples at any 
fixed sample rate). Whenever we reach a 
boundary, we jump to the diametrically 
opposed boundary point and continue 
as before. This gives us a list of  segments 
in a format similar to that of  Figure 1. 
To listen to the output, we convert it to a 
sampled signal.

8 Observations and conclusions

Early Bell-Labs-resident composers such 
as James Tenney, Jean-Claude Risset, and
Charles Dodge set out a theory and praxis 
of  computer music that many composers
have since followed, privileging precise 
execution of  carefully specified and

planned-for musical desiderata. 
The hankering of  late twentieth-
century Western composers for order 
and structure fit in perfectly with 
the computer’s ability to accurately 
manipulate data, and their musical 
practice did not suffer much from 
the computer’s main early failing: 
the impossibility of  real-time audio 
computations. It is in a spirit of  
appreciation for their contributions that I
am here exploring the spaces beyond the 
pale they constructed – if  for no other
reason than the light it sheds on what 
we’re doing as we follow in their
footsteps.

Meanwhile, traditional musical 
instruments (especially that oldest one, 
the human voice) refuse to give up their 
secrets, and remain capable of  musical 
gestures that no computer can yet imitate.  
Part of  the secret undoubtedly lies in 
the real-time interaction between player 
and instrument, and perhaps another 
aspect is the complexity and inherent 
unpredictability of  the physical processes 
that take place inside the instruments.

It is no accident that all the examples 
I have invoked here are in one way 
or another unpredictable. Because of  
this they practically require real-time 
exploration to unlock their musical 
possibilities. In this respect they are all also 
beholden to another tradition perhaps 
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best exemplied by Michel Waisvisz’s
famous Crackle Box. They lie on the 
fringe of  what is considered correct 
electronic music practice. Fringes are 
are interesting loci, and any reasonably 
complex domain will have many of  them; 
so even if  each individual one is limited in 
range their aggregate might offer a large 
range of  possibilities. Besides, what seems 
like a fringe one day might be understood
as the mainstream sometime in the future 
(for example: electronic music itself).

Notes 

1.The examples used in this article 
are: mathews-table-lookupexample.
pd, bentbob-test.pd,  forcedosc-test.pd,  
lorenz-test.pd, coupled-sampled.pd. All 
are available from msp.ucsd.edu/ideas/
icmc15-examples/
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